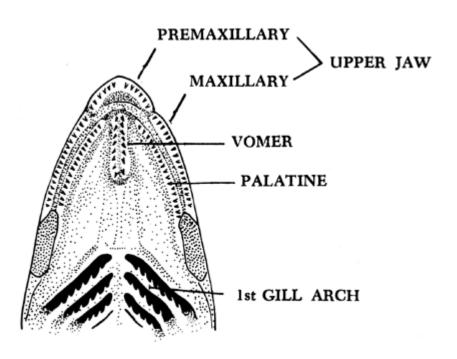


Biology and Ecology of Kawakawa, Euthynnus affinis (Cantor, 1849)

Diagnostic Features (outside)

- Body naked except for corselet and lateral line;
 - Maximum; Females and males 100 cm FL; weight 14 kg. The all-tackle
 - Max record; 96.5 cm FL, 11.80 kg (Merimbala, New South Wales, 1980)
- Pectoral fin rays 25-29; Dorsal spines (total): 10-15; Dorsal soft rays (total): 11-15; Anal spines: 0; Anal soft rays: 11-15;
- Anterior spines of first dorsal fin much higher than those midway.

• Bony caudal keels on 33 and 34 vertebrae.


Color (body)

- Several black spots usually present between pectoral-and pelvic-fin bases;
- Back dark blue-green with a complex striped pattern under dorsal fin bases;

Diagnostic Features (inside

- Gillrakers 29 to 33 on first arch; gill teeth 28 or 29;
- Vomerine teeth absent? (FAO, 1983); present? (Nakabo, 2001)
- Vertebrae 39;
- Swim bladder absent.

Geographical Distribution

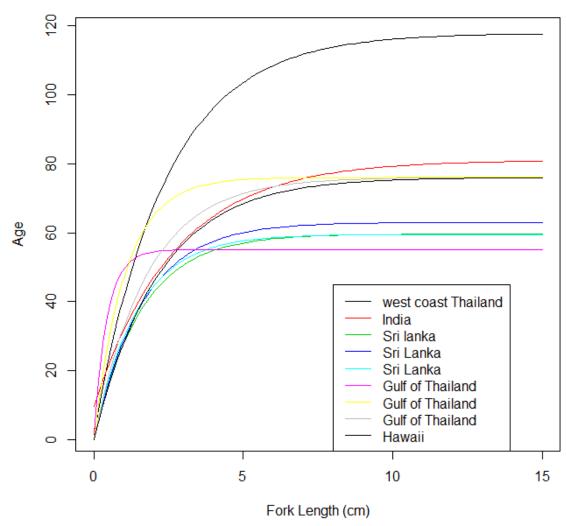
- Throughout the warm waters of the Indo-West Pacific, including oceanic islands and archipelagos.
- A few stray specimens have been collected in the eastern tropical Pacific (Los Angels).

Length-Weight Relationships

$$W = a * L^b$$

Region	a	b	Units	Reference
Hawaii	2.10627E-05	2.99	(FL) cm – kg	Uchiyama and Kazama, 2003
India	0.0254	2.89		Prathibha et al, 2012
off Pakistan/ Arabian Sea.	0.0076	3.09	/'I'I \ 0.300 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Quratulan Ahmed, et al., 2016

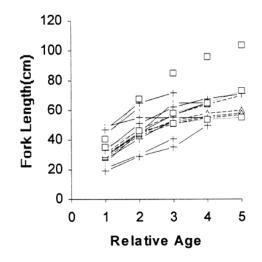
Estimated Growth Parameters (von Bertalanffy)


$$L_t = L_{\infty} \left(1 - e^{-k(t - t_0)} \right)$$

Region	$egin{array}{c} L_{\infty} \ (FL: \ cm) \end{array}$	k (year-1)	$egin{array}{c} \mathbf{t_0} \\ ext{(years} \\ ext{)} \end{array}$	Aging Metho d	Reference
west coast Thailand	76	0.46	-	Modal progres.	Yesaki, 1982
India	81	0.37	-0.344	ELEFAN	Silas et al., 1985b
Sri lanka	59.6	0.63	-	ELEFAN	Joseph et al., 1987
Sri Lanka	63	0.61	-	ELEFAN	
Sri Lanka	59.5	0.69	-	Bhattach arya	
Gulf of Thailand	55.1	2.23	-0.015	Modal progres.	Supongpan and Saikliang, 1987
Gulf of Thailand	76	0.96	-	Modal progres.	Yesaki, 1989b, 10-day intervals
Gulf of Thailand	76	0.56	-	Modal progres.	Yesaki, 1989b, monthly intervals
Hawaii	117.8	0.42	-0.03	otoliths	Uchiyama, 1980

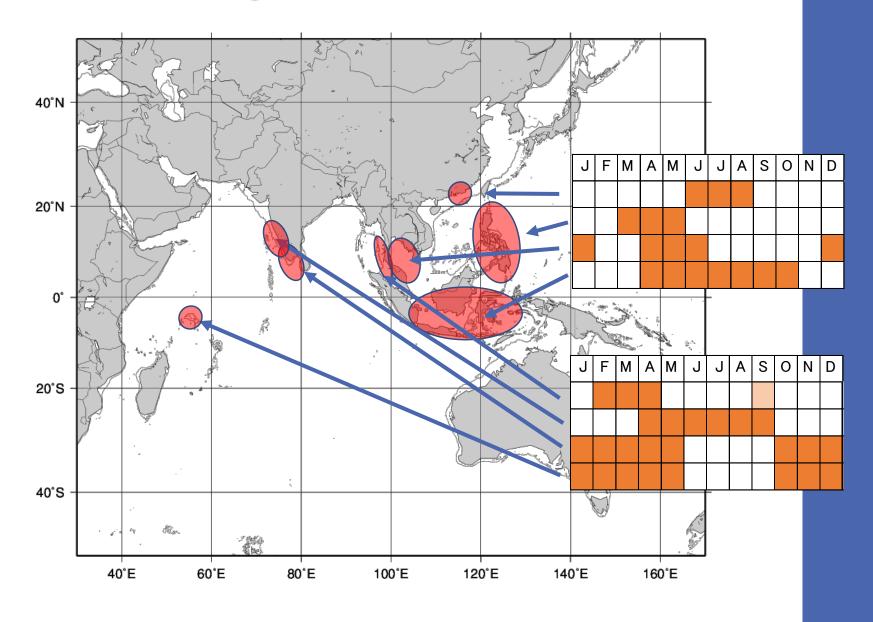
Age-Length Relationshi,

$$L_t = L_{\infty} \left(1 - e^{-k(t - t_0)} \right)$$


IOTC-2015-WPNT05-DATA13

Kawakawa

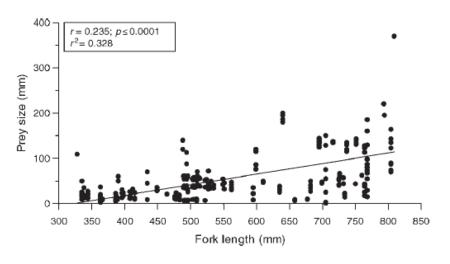
- The smallest mature females
 - Philippines: 38.5 cm (Ronquillo, 1963)
 - Gulf of Thailand: 37.0 cm (Klinmuang, 1978)
 - Gulf of Thailand: 33.4 cm (Cheunpan, 1984)
 - West coast Thailand: 38 cm (Yesaki, 1982)
 - Papua New Guinea: 48.9 cm(Wilson, 1981)
- 50% Maturity:
 - Gulf of Thailand: 40 cm (Cheunpan, 1984)
 - Mangalore, India: 43-44cm (Muthiah, 1985)

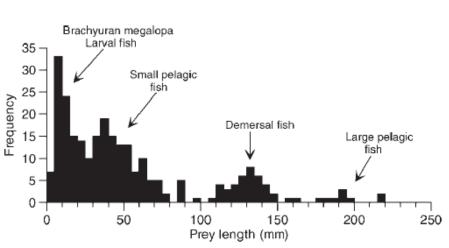

- -→Most probably Kawakawa start maturation from age 1.
- Fecundity:
 - India: 210,000 ~680,000/spawning (48.5 ~ 65.0 cm FL) (Rao, 1964)
 - India: 202,000 ~1,570,000/spawning (39.4 ~ 67.0cm FL) (Muthiah, 1985)
 - SCS: av. 1,730,000/spawning (39.5 to 51.0cm) (Klinmuang, 1978)
- Kawakawa is a multiple spawner releasing ova at frequent intervals during a spawning season.

Spawning Seasons

- Philippine waters; March ~ May
- Seychelles; during the period of the NW monsoon (October/November ~ April/May)
- off East Africa; from the middle of the NW monsoon period to the beginning of the SE monsoon (January ~ July)
- off Indonesia; probably from August ~ October

Spawning Areas and Seasons




Diet Composition

- Australian neritic waters; Overall 43 prey taxa
 - primarily pelagic clupeoids (78% by WW; 71% by FO)
 - demersal fish (19% WW; 32% FO).
- Seasonal Change
 - Autumn; virtually only engraulids
 - other seasons; engraulids were still the dominant, but a greater variety of other prey were consumed.
- Size difference
 - Small tuna; small pelagic crustaceans and teleosts
 - Medium/large tuna; larger pelagic and demersal teleosts

- Fish size: 33~80cm
- Prey size in length: mostly ~200mm
- Prey types consisting of four distinct prey size modes
- Moderate correlation between prey size and fish size

(Griffiths et al, 2009)

Prey-Predation Relationsh

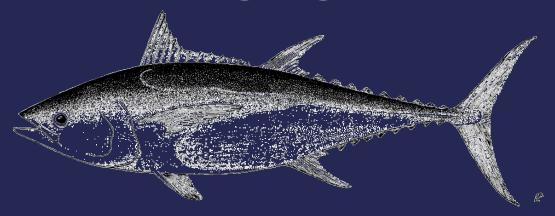
- *E. affinis* is a highly opportunistic predator feeding indiscriminately on fish, shrimps and cephalopods.
- In turn, it is preyed upon by other predators.

Number and incidence of kawakawa juveniles in the stomachs of predators sampled from tropical waters (modified from Argue et al., 1983).

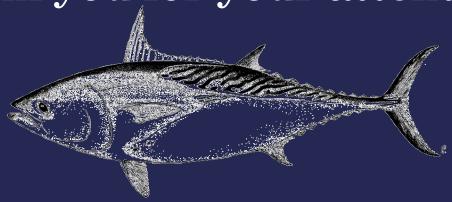
Predator	Predators examined for full stomach tuna		No of	Predators with	Juveniles per 100	% predators with
	content	juveniles	juveniles	juveniles	predators	juveniles
Katsuwonus pelamis	3,896	8,175	31	19	0.38	0.23
<u>Thunnus</u> <u>albacares</u>	1,018	1,711	30	2	1.75	0.12
Euthynnus affinis	145	233	2	1	0.90	0.45

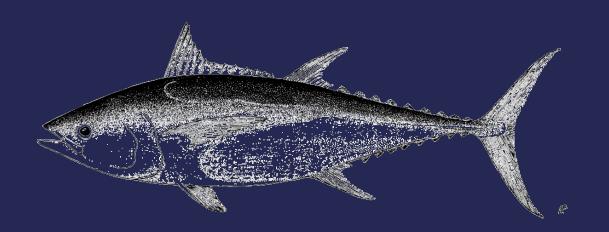
Habitat

- An epipelagic, neritic species inhabiting waters temperatures ranging from 18 to 29° C.
- LOT vs KAW; both species inhabit on continentail shelfs
 - LOT is generally dominant in areas with <u>broad continental</u> <u>shelves</u> such as the Gulf of Thailand, east coast of Peninsular Malaysia and north coast of Australia (Yesaki, 1994),
 - While KAW are dominant in areas with <u>narrow continental</u> <u>shelves</u> such as Sri Lanka and the Philippines (Yesaki, 1994).
- Pre-adults (20 40 cm) distributed principally in the innerneritic area (0 -to approximately 50 m depth) off west coast of Thailand. It began leaving from the innerneritic area with increasing size, and moved into the outer-neritic after 40 cm. (Yesaki, 1982)
- However, KAW were also found under FADs deployed deeper than 200 m depths (Lee, 1982, Frusher, 1986).
- Like other scombrids, *E. affinis* tend to form multispecies schools by size, comprising from 100 to over 5 000 individuals.

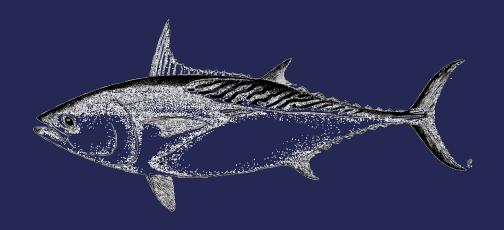

Summary: Kawakawa

- An epipelagic, predominantly neritic species inhabiting tropical to temperate provinces of the Indo-Pacific, max size 96.5cm FL.
- Age1: ~30cm, Age2: ~40cm, Age3; ~60cm FL
- Most probably start maturation from age 1+
- Fecundity: 200,000~1.5 million eggs/batch
- Spawning season differs depending on the areas
- Opportunistic feeder, its diet includes many species of pelagic/demersal fish, crustaceans, cephalopods at varying percentages. moderate correlation of prey size and fish size.
- Tend to form multispecies schools by size
- Predated by other tuna species and large carnivorous fishes
- Little information on the early life history, migration, and subpopulations





Please provide us local information of Neritic Tunas, including reports and documents written in local languages



Thank you for your attention

Thank you for your attention Terima Kasih

